
Systems Programming and Computer Architecture Jonathan Smith

Extra Exercise Collection

Disclaimer: These exercises are in no way o�cially a�liated with the course. There is no guarantee
of correctness, although I do my best to �x any mistakes. (If you spot an error, please let me know!)

Current version: October 7, 2025

Exercice 1 :
Using the Shell

(a) Give the bash command to create a new directory with name �foo� in the current directory.

(b) Give the bash command to create a new �le called �foo.c� in the parent directory of the
current directory.

(c) Give the bash command to print the contents of �foo.txt�, which is located in your home
directory.

(d) Give the bash command to run the executable �foo�, which is located in the sub-directory
�build� of the current directory.

(e) Give the bash command to compile �foo.c�, located in the current directory, into the exe-
cutable �foo� using gcc, with optimisation level 3 enabled.

Solution:

(a) mkdir foo

(b) touch ../foo.c

(c) less ~/foo.txt

(d) ./build/foo

(e) gcc -o foo -O3 foo.c

Exercice 2 :
Basics of C: Answer the following questions with true/false.

(a) There is no way for the value of a variable declared within the scope of a function to persist
between calls.

(b) An int will always be exactly 4 bytes in size.

(c) The standard stipulates that a long must always be larger in size than an int.

(d) The integer 0 evaluates to False.

(e) The integer 100 evaluates to True.

Page 1

Systems Programming and Computer Architecture Jonathan Smith

(f) The integer −1 evaluates to False.

(g) The value of the expression foo++ is the same as the value of the expression ++foo.

(h) Suppose we have int foo[5]. Then foo[0] is guaranteed to be located next to foo[1] in
memory.

(i) Suppose we have int foo[5]. Then foo[-1] is a valid expression.

(j) In general, to store a string of length k, the smallest possible array we can de�ne to do so
is char str[k].

Solution:

(a) False. The static keyword may be used.

(b) False. The size of an int is implementation de�ned, but it must be at least 2 bytes.

(c) False. Both long and int are 4 bytes in 32 bit x86.

(d) True.

(e) True.

(f) False.

(g) False. The prior has the value foo, whereas the latter has the value foo + 1.

(h) True. Arrays are sequentially allocated in memory.

(i) True. Array bounds are not checked.

(j) False. We require an extra char to store the NUL byte.

Exercice 3 :
Operator Precedence: Correctly parenthesise the following expressions according to the rules
of operator precedence. Assume i, j are some ints, p is some pointers to ints, and f is some
function returning int. Eg. 3 * 4 + 2 ≡ (3 * 4) + 2.

(a) i >> j + 1 * i - j

(b) i == j & * p + 3

(c) Challenge: * p = i >> 3 << j - 2 * ! f () | 1

Solution:

(a) i >> (j + (1 * i) - j)

Page 2

Systems Programming and Computer Architecture Jonathan Smith

(b) (i == j) & ((*p) + 3) Note that, surprisingly, & has a lower precedence than ==! This
is an artifact of ancient C. Back then, no && existed, so it made sense to have it this
way, such that one could for instance have i == j & i == 1 ≡ (i == j) & (i == 1).
Dennis Ritchie himself admitted that this should have been changed in retrospect.

(c) (*p) = (((i >> 3) << (j - (2 * (! (f()))))) | 1)

Exercice 4 :
C Integers: Answer the following questions with true/false (T/F) or a short answer (A). For
the integer lengths, assume standard values for a x86_64 Linux machine.

(a) Give the hexadecimal representation of the minimum value of an unsigned int (A).

(b) Give the hexadecimal representation of the minimum value of an int (A).

(c) Give the hexadecimal representation of the maximum value of an int (A).

(d) Give a way to compute i - j using only bitwise operators and + (A).

(e) When signed and unsigned values are mixed in an expression, signed values are implicitly
casted to unsigned (T/F).

(f) Suppose we have short s de�ned as some negative number. (int) s will be positive, as
the extra bits on the left will be �lled with 0s (T/F).

(g) Suppose we have int i de�ned as some negative number. (char) i will always be negative
too (T/F).

(h) u << 3 + u ≡ u * 9 (T/F).

Solution:

(a) 0x00 00 00 00

(b) 0x80 00 00 00

(c) 0x7F FF FF FF

(d) i + ~j + 1

(e) True.

(f) False. It will be sign-extended, so it remains negative.

(g) False. It will be truncated, so it might be positive too.

(h) False. Operator precedence.

Exercice 5 :
Multiplication puzzles: Match the following series of shifts and adds to a multiplicative factor.
Assume u is some unsigned and no over�ow.

Page 3

Systems Programming and Computer Architecture Jonathan Smith

(a) u << 2

(b) (u << 5) + (u << 3) + u

(c) ((u << 10) >> 5) + (u << ~(-11))

Solution:

(a) u << 2 ≡ u * 4

(b) (u << 5) + (u << 3) + u ≡ u * 32 + u * 8 + u ≡ u * 41

(c) ((u << 10) >> 5) + (u << ~(-11)) ≡ (u << 5) + (u << 10)

≡ (u * 32) + (u * 1024) ≡ u * 1056

Exercice 6 :
The C Preprocessor

(a) De�ne a macro SQUARE(x) that multiplies its argument with itself.

(b) De�ne a macro DEBUG_INT(x) that takes a variable's name x and prints �DEBUG: x =
value of x � if DEBUG is de�ned, and otherwise does nothing.

(c) Name two things that belong in a header (.h) and a source (.c) �le, respectively.

(d) When are preprocessor macros bene�cial? What are their downsides?

Solution:

(a) #define SQUARE(x) ((x) * (x)) Note that the brackets around x are very important.
If they weren't there, for example, SQUARE(1 + 2) would expand to 1 + 2 ∗ 1 + 2 =
1 + 2 + 2 = 5 ̸= 9.

(b)
#ifdef DEBUG

#define DEBUG_INT(x) printf("DEBUG: %s = %d\n", #x, x)

#else

#define DEBUG_INT(x)

#endif

Note that the else case is also required.

(c) Header: function declarations, global macros/constants, global structs/unions, ...
Source �le: function de�nitions, static de�nitions/declarations, ...

(d) Macros are useful as a shorthand for repetitive expressions. They should not, and cannot
be used as a replacement for functions. They are not recursive and o�er no type checking
and can thus quickly lead to hard to debug errors.

Page 4

Systems Programming and Computer Architecture Jonathan Smith

Exercice 7 :
Memory Layout Basics

(a) Fill in the blanks: The begins at a high address and grows downwards, whereas the
begins at a low address and grows upwards.

(b) True/False: Virtual memory gives each process its own address space. Hence it is never
possible that two processes access the same physical page.

(c) Fill in the blanks: In a little-endian machine, the least signi�cant byte is stored at the
address.

(d) True/False: The stack will always start at the exact same address in memory.

(e) Outline what happens on the stack when a function ("the caller") calls another function
("the callee") and then when the callee returns.

Solution:

(a) The stack begins at a high address and grows downwards, whereas the heap begins at
a low address and grows upwards.

(b) False. It is possible, for instance if a page that houses shared libraries.

(c) In a little-endian machine, the least signi�cant byte is stored at the lowest address.

(d) False. Modern systems use address space layout randomisation, hence this is not true
in general.

(e) A stack frame will be allocated for the callee on top of the stack frame of the caller
(this means at a lower address!). The stack frame will contain, among other things, the
return address, such that the caller can continue executing once the callee has returned.
When the callee returns, its stack frame is deallocated and the top of the stack is now
at the end of the caller's stack frame.

Exercice 8 :
Pointers

(a) Explain what the unary & and * operators do.

(b) True/False: It hold that sizeof (int) == sizeof (int *)

(c) True/False: Suppose we have:

int main(void) {

int x = 0;

int *p = malloc(sizeof (int));

return 0;

}

Then it holds that &x > p.

Page 5

Systems Programming and Computer Architecture Jonathan Smith

(d) True/False: In a byte addressable system, if we have int a[5]; int *p=a, then a[1] can
be accessed via *(p + sizeof (int)).

Solution:

(a) The unary & returns the memory address of a given variable. The unary * operator
returns the content of memory at the location of the operand.

(b) False. sizeof (int) must only be large enough to hold an integer, whereas
sizeof (int *) must be large enough to hold a memory address.

(c) True. &x gives an address on the stack, whereas p gives an address on the heap.

(d) False. Pointers are typed, so a[1] can be accessed via *(p + 1).

Exercice 9 :
Cdecl: For the following C declarations, give their natural language counterpart and vice-versa.

(a) struct foo *x[10]

(b) struct foo (*x)[10]

(c) int **(*x)(int, int)[10]

(d) Declare x as an array 10 of pointer to function returning pointer to int.

(e) (char*[]) x

(f) (char (*)[10]) x

(g) (int (*)(int *, char)[3]) x

(h) Challenge: Declare x as function taking pointer to int and returning array 3 of array 10 of
pointer to function taking pointer to pointer to int and returning pointer to union foo.

(i) Challenge++: int* (*(*x[10])(int (*)(int *)))(int *)

Solution:

(a) Declare x as an array 10 of pointer to struct foo.

(b) Declare x as a pointer to array 10 of struct foo.

(c) Declare x as a pointer to function taking (int, int) and returning array 10 of pointer
to pointer to int.

(d) int *(*x[10])()

(e) Cast x into array of pointer to char.

(f) Cast x into pointer to array 10 of char.

Page 6

Systems Programming and Computer Architecture Jonathan Smith

(g) Cast x into pointer to function taking pointer to int and char and returning array 3 of
int

(h) union foo*(*x(int*)[3][10])(int**)

(i) Declare x as array 10 of pointer to function taking (pointer to function taking pointer
to int and returning int) and returning pointer to function taking pointer to int and
returning pointer to int. Phew!

Exercice 10 :
Malloc Implementations and Metrics

(a) Outline the di�erences between implicit and explicit free lists.

(b) (True/False): With explicit free lists, boundary tags are no longer required.

(c) Explain the di�erences between �rst �t, next �t, and best �t policies.

(d) Consider the following sequence of (m/c)alloc/free calls. Compute the aggregate payload
Pk and the minimum heap size Mk at points 1, 2, and 3.

#include <stdint.h>

int main(void) {

int *p1 = malloc (1<<10);

free(p1);

// Point 1

uint32_t *p2 = calloc(1<<8, sizeof(uint32_t));

char *p3 = malloc (1<<10);

// Point 2

int64_t p4 = malloc (1<<10);

free(p2);

// Point 3

free(p3);

free(p4);

return 0;

}

Solution:

(a) With implicit free lists, all blocks, allocated or free, are in an implicit list given by the size
attribute in their header. For each block, we can get to the next block by incrementing
our pointer by the size of the current block
Explicit free lists on the other hand maintain an explicit (doubly) linked list of all free
blocks. All free blocks will contain a pointer to the next and previous free block.

Page 7

Systems Programming and Computer Architecture Jonathan Smith

(b) False. Boundary tags are still required for coalescing.

(c) First �t: Start at the beginning of the free list every time and allocate the �rst free
block of su�cient size.
Next �t: Start where the previous search ended and allocate the �rst free block of
su�cient size.
Best �t: Scan the entire free list for the free block with the fewest super�uous bytes
and allocate it.

(d) P1 = 0 bytes, H1 = 1024 bytes
P2 = 2048 bytes, H2 = 2048 bytes
P3 = 2048 bytes, H3 = 3072 bytes

Exercice 11 :
x86_64 Assembly Warm Up: Answer the following questions with true/false.

(a) In x86_64, each instruction is exactly 8 bytes in size.

(b) Generally speaking, compiling a given program for a RISC architecture will result in more
instructions than for a CISC architecture.

(c) A long word is 64 bits in size.

(d) movq (%rax), (%rcx) is a valid instruction.

(e) movq 0x9(%rbx, %rcx), %rax will move whatever is at memory location %rbx + %rcx + 0x9

into %rax.

(f) testl %eax, %ebx sets the ZF if %eax != %ebx.

Solution:

(a) False. Instructions have variable sizes.

(b) True. RISC instructions are simpler and thus sometimes multiple need to be combined
to achieve what a single CISC instruction can. This is not to say that RISC is slower
than CISC, however.

(c) False. A long word is 32 bits in size. A quadword is 64 bits in size.

(d) False. Memory/memory transfer is not possible in a single instruction.

(e) True.

(f) False. testl %eax, %ebx computes %ebx & %eax and sets ZF and SF accordingly. The
statement does not hold for %eax = $1, %ebx = $3, for example.

Page 8

Systems Programming and Computer Architecture Jonathan Smith

Exercice 12 :
Condition Codes: Recall the x86_64 condition codes zero �ag (ZF), sign �ag (SF), carry �ag
(CF), and over�ow �ag (OF). For each of the following conditional jumps, derive a predicate that
is true if and only if the jump is taken. You may use the operators ∧,∨,⊕ (xor), and ¬. Hint:
Assume the previous instruction was cmpq a, b (i.e. subq a, b where the result is discarded)
and recall the mnemonics are from the perspective of b relative to a (i.e. jle is taken if b is less
than or equal to a).

(a) je

(b) jb

(c) ja

(d) jl

(e) jge

Solution:

(a) ZF. If a and b are equal, cmpq a, b ≜ b− a = 0, so ZF is set.

(b) CF. First, recall that jb interprets the value as unsigned. If b < a and we do the
subtraction b− a by hand, we can see we will generate a borrow, so CF is set.

(c) ¬(CF ∨ ZF). We have b > a ⇐⇒ ¬(b ≤ a) and b ≤ a ⇐⇒ b < a ∨ b = a, so we can
simply combine our results from the previous two subtasks.

(d) OF⊕SF. First, recall that jl interprets the value as signed. Furthermore, OF⊕SF ⇐⇒
(¬OF∧SF) ∨ (OF∧¬SF). If b < a, b− a < 0. However, the subtraction may over�ow.
The �rst case holds if the result is negative and no over�ow occurred, the second case
covers the scenario where the result over�ows and is thus positive.

(e) ¬(OF⊕ SF). We can simply negate the result from the previous subtask.

Exercice 13 :
Reading Assembly Code I: In the following, assume the below C function was compiled with
di�erent values of the constant K and varying optimisation levels. For each code fragment, state
the value of K. Hint: Per calling convention, the �rst argument to a function is stored in %rdi,
the second in %rsi, while the return value is stored in %rax.

int foo(int a) {

return K * a;

}

(a)

foo:

pushq %rbp

Page 9

Systems Programming and Computer Architecture Jonathan Smith

movq %rsp , %rbp

movl %edi , -4(%rbp)

movl -4(%rbp), %edx

movl %edx , %eax

sall $3, %eax

addl %edx , %eax

sall $2, %eax

popq %rbp

ret

(b)

foo:

leal (%rdi ,%rdi ,2), %eax

sall $5, %eax

ret

(c)

foo:

xorl %eax , %eax

ret

Solution:

(a) K = 36.

(b) K = 96.

(c) K = 0.

Exercice 14 :
Reading Assembly Code II: Consider the following C function that computes the GCD of a
and b using the Euclidean Algorithm. Which of the following x86_64 assembly code fragments
correspond to it? Hint: More than one answer may be correct. Also recall the calling convention
as in Exercise 13.

long foo(long a, long b) {

while (a != b) {

if (a > b) {

a = a - b;

}

else {

b = b - a;

}

Page 10

Systems Programming and Computer Architecture Jonathan Smith

}

return a;

}

(a)

foo:

movq %rsi , %rax

cmpq %rsi , %rdi

jne .L5

.L2:

ret

.L3:

subq %rdi , %rax

.L4:

cmpq %rax , %rdi

je .L2

.L5:

cmpq %rax , %rdi

jle .L3

subq %rax , %rdi

jmp .L4

(b)

foo:

movl $1, %edx

xorl %eax , %eax

.L2:

cmpq %rsi , %rdx

jg .L5

imulq %rdi , %rdx

incq %rax

jmp .L2

.L5:

decq %rax

ret

(c)

foo:

movq %rdi , %rax

cmpq %rsi , %rdi

jge .L4

.L3:

movq %rsi , %rcx

Page 11

Systems Programming and Computer Architecture Jonathan Smith

addq %rsi , %rax

subq %rdi , %rcx

leaq -1(%rcx), %rdx

imulq %rsi , %rdx

movq %rcx , %rsi

addq %rdx , %rax

cmpq %rcx , %rdi

jl .L3

ret

.L4:

ret

(d)

foo:

pushq %rbp

movq %rsp , %rbp

movq %rdi , -8(%rbp)

movq %rsi , -16(%rbp)

jmp .L2

.L4:

movq -8(%rbp), %rax

cmpq -16(%rbp), %rax

jle .L3

movq -16(%rbp), %rax

subq %rax , -8(%rbp)

jmp .L2

.L3:

movq -8(%rbp), %rax

subq %rax , -16(%rbp)

.L2:

movq -8(%rbp), %rax

cmpq -16(%rbp), %rax

jne .L4

movq -8(%rbp), %rax

popq %rbp

ret

Solution: (a), (d)

Exercice 15 :
Compiling Basics: Answer the following questions with true/false.

Page 12

Systems Programming and Computer Architecture Jonathan Smith

(a) There exist functions that do not require a stack frame.

(b) Every function must end in a ret instruction.

(c) In C, nested arrays are stored in row-major ordering.

(d) A multi-level array of k dimensions requires the same amount of memory accesses to access
as a nested array of k dimensions.

(e) switch statements are always implemented as a series of if/else statements.

Solution:

(a) True. Any function that can do its computations solely within registers will not require
a stack frame.

(b) False. The function may do a tail-call optimisation and simply jmp to another function
instead.

(c) True.

(d) False. The nested array will only require one memory access, as the array is contiguous
in memory. The multi-level array on the other hand will require k memory accesses.

(e) False. Compact switch statements will be compiled using a jump table.

Exercice 16 :
Struct Alignment: Sketch the memory layout and state the alignment requirement K of the
following struct declarations

(a) struct s {int i; char c; void *p;};

(b) struct s {char a[3]; char c; double d; int *p[1]};

(c) struct s {short s; struct {int i; char c} t[2]; union {int i; float f} u;};

Solution:

(a) K = 8

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

| i | i | i | i | c | / | / | / | p | p | p | p | p | p | p | p |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

(b) K = 8

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

| a | a | a | c | / | / | / | / | d | d | d | d | d | d | d | d |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Page 13

Systems Programming and Computer Architecture Jonathan Smith

+---+---+---+---+---+---+---+---+

| p | p | p | p | p | p | p | p |

+---+---+---+---+---+---+---+---+

(c) K = 4

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

| s | s | / | / |t0i|t0i|t0i|t0i|t0c| / | / | / |t1i|t1i|t1i|t1i|

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

+---+---+---+---+---+---+---+---+

|t1c| / | / | / |uif|uif|uif|uif|

+---+---+---+---+---+---+---+---+

Exercice 17 :
Nested Arrays

(a) Let T a[X] be an array X of type T . Derive a formula for the address of a[i]. Hint: You
may use the base address of a as &a and the size of T as sizeof(T).

(b) Let T a[X][Y] be an array X of array Y of type T . Derive a formula for the address of
a[i][j]. Hint: You may also declare a as S a[X] with typedef T S[Y].

(c) Let T a[K_1][K_2]...[K_n] be an array K1 of array K2 . . . of array Kn of T . Derive a
formula for the address of a[i_1][i_2]...[i_n].

Solution:

(a) &a+ sizeof(T) · i

(b) &a+ sizeof(T) · Y · i+ sizeof(T) · j = &a+ sizeof(T) · (Y · i+ j)

(c) &a+ sizeof(T) ·
∑n

k=1 ik
∏n

l=k+1Kl

Exercice 18 :
Reading setjmp/longjmp: What does the following code output?

#include <stdio.h>

#include <setjmp.h>

static jmp_buf buf;

void foo(void) {

printf("foo1\n");

longjmp(buf , 2);

Page 14

Systems Programming and Computer Architecture Jonathan Smith

printf("foo2\n");

}

int main(void) {

int rv;

if ((rv = setjmp(buf)) == 0) {

printf("main1\n");

foo ();

printf("main2\n");

}

else if (rv == 1){

printf("main3\n");

}

else {

printf("main4\n");

}

return 0;

}

Solution:

main1

foo1

main4

Exercice 19 :
Linker Quiz: Answer the following questions with true/false.

(a) Statically linked executables tend to produce larger binaries than dynamically linked exe-
cutables.

(b) The linker will not link together two symbols of di�erent sizes (assume -fno-common).

(c) All the operating system needs to do when starting execution of a statically linked binary
is to copy its contents into memory.

(d) By marking the stack as non-executable, bu�er overruns are no longer a concern.

Solution:

(a) True. Dynamically linked executables need not include all relevant libraries in their
binary.

(b) False.

Page 15

Systems Programming and Computer Architecture Jonathan Smith

(c) False. Even though it doesn't need to dynamically link, it still needs to eg. allocate
space for symbols in the .bss section.

(d) False. Bu�er overruns still pose a risk, for instance with return oriented programming.
(See attacklab)

Exercice 20 :
Identify the linker symbols: For the following C �le, for each name state what kind of
linker symbol is generated (global, external, local, none), and whether it is weak or strong where
applicable. Assume -fcommon. Challenge: Additionally, state the exact type of each linker
symbol (e.g. an external symbol generates a U in the symbol table). man nm provides a succinct
overview of the various types.

#include <stddef.h>

#include <stdlib.h>

#define BIAS (10)

extern void add_vec(int *dest , int *src , size_t len);

int sum_vec(int *vec , size_t len);

extern int *vec1;

int arr [25];

int *vec2 = arr;

static const size_t ARR_LEN = 25ul;

int sum() {

static int iter = 0;

int *res = calloc(ARR_LEN , sizeof(int));

add_vec(res , vec1 , sizeof(int));

add_vec(res , vec2 , sizeof(int));

int sum = sum_vec(res , ARR_LEN);

free(res);

return sum + iter + BIAS;

}

Solution:

(a) BIAS: none

Page 16

Systems Programming and Computer Architecture Jonathan Smith

(b) add_vec: external (U in symbol table)

(c) sum_vec: external (U in symbol table)

(d) vec1: external (U in symbol table)

(e) arr: global, weak (C in symbol table)

(f) vec2: global, strong (D in symbol table)

(g) ARR_LEN: local (R in symbol table)

(h) sum: global, strong (T in symbol table)

(i) iter: local (B in symbol table)

(j) res: none

(k) calloc: external (U in symbol table)

(l) sum: none

(m) free: external (U in symbol table)

Exercice 21 :
Floating Point Quiz: Answer the following questions with true/false.

(a) Every int can be exactly represented as a double on an x86_64 Linux machine.

(b) When converting a float to a long, the error will always be at most 1. (Assuming no
special values)

(c) The exponent bias B is computed as B = 2e − 1, where e is the number of exponent bits.

(d) In the case of a denormalised �oating point number, the exponent E = −B + 1.

(e) Floating point numbers are generally evenly distributed.

(f) Round-to-even rounding is chosen for �oating point numbers out of ease of implementation,
despite it being statistically biased.

(g) Suppose we have a binary decimal number of the form 1.B . . . BGRX1X2 . . . , where the
guard bit G is the LSB of our result. Let S =

∨∞
i=1Xi. We round the result i� G = R =

1, S = 0.

Solution:

(a) True. double is able to represent integers with size ≤ 53 bits exactly.

(b) False. The largest possible �oat is ∼ 3.4× 1038 >> 9.2× 1018 ≈ 263 − 1

Page 17

Systems Programming and Computer Architecture Jonathan Smith

(c) False. B = 2e−1 − 1. The bias is chosen in such a way that there is a roughly equal
positive/negative exponent range.

(d) True. This has the bene�t that the smallest normalised exponent (exp = 0 . . . 01) is
the same as the normalised exponent. (E = exp−B = 1−B = −B + 1)

(e) False. As the exponent gets larger, representable values grow further spaced apart.

(f) False. Round to even is not statstically biased and arguably harder to implement than
other rounding modes.

(g) False. This is the case where we round up due to round to even. However, we must
also round up if R = S = 1.

Exercice 22 :
Converting to FP: Give the bit representation of the following numbers when converted to
�oating point. The �oating point format is half precision IEEE 754, that is 1 sign bit, 5 exponent
bits, and 10 fraction bits.

(a) 5000 = 10011100010002

(b) −1
3

(c) 1× 1020

Solution: We have B = 2e−1 − 1, so here B = 25−1 − 1 = 15. Hence:

(a) 10011100010002 = 1.0011100010002 × 212

We cannot store all fraction bits, so we have to round. We have G = 0, R = 0, S = 0,
so we do not need to round up and can simply truncate the result.
This gives us frac = 0011100010 with the leading 1 removed.
Clearly s = 0. E = exp−B, so exp = E +B = 12 + 15 = 27 = 110112.
Thus the �nal result is: 0 11011 0011100010

(b) −1
3
= −0.01010101 . . .2 = −1.010101010101 . . .2 × 2−2

As the fraction is in�nite, we clearly need to round. We have G = 1, R = 0, S = 1, so
no need to round up.
Hence frac = 0101010101. exp = E +B = −2 + 15 = 13 = 011012.
Thus the �nal result is: 1 01101 0101010101.

(c) The largest normalised number we can store in our format has exp = 11110 =⇒ E = 15
and frac = 1111111111, giving a value of (2−2−10)×215 ≈ 216 = 26×210 ≈ 26×103 <<
1020. Hence we must encode positive in�nity.
Thus the �nal result is: 0 11111 0000000000

Page 18

Systems Programming and Computer Architecture Jonathan Smith

Exercice 23 :
Determining key FP values: Give the value of the following descriptions in the format a

b
×2c

with a, b, c being base 10 integers. Assume the same format as in Exercise 22, i.e. 1 sign bit, 5
exponent bits, and 10 fraction bits.

(a) The largest denormalised number.

(b) The smallest positive normalised number.

(c) The largest normalised number.

Solution: We have B = 2e−1 − 1, so here B = 25−1 − 1 = 15. Hence:

(a) In the denormalised case we have E = −B + 1 = −15 + 1 = −14.
Furthermore, we know our fraction has an implicit leading 0. As we want the largest,
we want frac = 1111111111. This gives 0.11111111112 × 2−14 = (1− 2−10)× 2−14.
Hence the �nal result is 1023

1024
× 2−14

(b) We want the smallest normalised exponent, so exp = 00001, giving E = 1−B = −14.
As our number is normalised, we have an implicit leading 1. As we want the smallest,
we get frac = 0000000000. This yields 1.00000000002 × 2−14 = 1× 2−14. Thus the �nal
result is 1

1
× 2−14.

(c) We want the largest normalised exponent, so exp = 11110, giving E = exp − B =
30−15 = 15. We have a leading 1 in the fraction, as it is normalised, and since we want
the largest, we have frac = 1111111111. This gives 1.11111111112×215 = (2−2−10)×215.
Thus the �nal result is 2047

1024
× 215

Exercice 24 :
Optimisation Quiz: Answer the following questions with true/false.

(a) With the -O3 �ag enabled, the compiler might perform optimisations that slightly change
the semantics of a program, with the bene�t of improving performance.

(b) Among RAR, RAW, WAW, and WAR dependencies, RAW is the one that typically carries
the greatest performance penalty.

(c) If a procedure is throughput bound, then its operations must execute sequentially.

(d) Much of the manual optimisation that was shown in the lecture is not necessary these days,
as modern compilers will simply auto-vectorise code anyway.

(e) If functions didn't have side e�ects, the compiler could optimise around calls much more.

Solution:

(a) False. Generally speaking, the compiler should not change the semantics of a given pro-
gram. There are however certain �ags with which the compiler may perform potentially
unsafe optimisations, but -O3 is not among them.

Page 19

Systems Programming and Computer Architecture Jonathan Smith

(b) True. Read-after-read dependencies aren't an issue, as a read after a read is always
�ne. Write-after-write dependencies and write-after-read dependencies can be alleviated
with register renaming. Read-after-write dependencies require the read to be postponed
until the write has completed.

(c) False. This is the case when a procedure is latency bound.

(d) False. Compilers are very conservative and still need a lot of assistance from program-
mers in order to auto-vectorise code, not only by setting the correct �ags, but also by
preparing the code in such a manner that vectorisation is possible.

(e) True. This is a big selling point for more pure/functional languages.

Exercice 25 :
Is the optimisation legal? For the following pairs of C snippets, argue whether they are
semantically equivalent in all cases, i.e. a compiler would be allowed to rewrite the code in such
a manner.

(a)

void f_0(int *a, int *b, int *c, size_t len) {

for (size_t i=0; i<len; i++) {

b[i] += a[i];

c[i] += a[i];

}

}

/* === */

void f_1(int *a, int *b, int *c, size_t len) {

size_t i;

for (i=0; i<len -1; i+=2) {

b[i] += a[i];

b[i+1] += a[i+1];

c[i] += a[i];

c[i+1] += a[i+1];

}

for (; i<len; i++) {

b[i] += a[i];

c[i] += a[i];

}

}

(b)

int f_0(int *a, size_t j, size_t k) {

int res = 0;

Page 20

Systems Programming and Computer Architecture Jonathan Smith

for (size_t i = 0; i < k; i++) {

res += a[2 * i + j * k];

}

return res;

}

/* === */

int f_1(int *a, size_t j, size_t k) {

int res = 0;

size_t i;

size_t offset = j * k;

for (i = 0; i < k - 1; i += 2) {

size_t inner = i << 1;

res += a[inner + offset];

res += a[inner + 2 + offset];

}

for (; i < k; i++) {

res += a[(i << 1) + offset];

}

return res;

}

(c)

int f_0(int *a, size_t len) {

int res = 0;

for (int i = 0; i < len; i++) {

res += a[i * 30];

}

return res;

}

/* === */

int f_1(int *a, size_t len) {

int res = 0;

for (int i = 0; i < len; i++) {

res += a[i << 5 - i << 1];

}

return res;

}

(d)

float f_0(float *a, long len) {

float res = 0;

for (long i = 0; i < len; i++) {

res += a[i];

Page 21

Systems Programming and Computer Architecture Jonathan Smith

}

for (long i= len - 1; i >= 0; i--) {

res += a[i];

}

return res;

}

/* === */

float f_1(float *a, long len) {

float res = 0;

for (long i = 0; i < len; i++) {

res += 2.0f * a[i];

}

return res;

}

Solution:

(a) Illegal. This is invalid due to aliasing. Consider the case where

int x[] = {1, 2, 0};

int a* = &x[0];

int b* = &x[0];

int c* = &x[1];

, then f_0(a, b, c, 2) will yield x[1] == 8, whereas f_1(a, b, c, 2) will yield
x[1] == 6.

(b) Legal. Strength reduction, code motion, and loop unrolling are both used here and
have no adverse side e�ects.

(c) Illegal. While this would be a great example for strength reduction, due to C operator
precedence i << 5 - i << 1 ≡ (i << (5-i)) << 1 ̸≡ i * 30.

(d) Illegal. While this would be legal for integers, �oating point operations are generally
not associative due to rounding. Hence they are not semantically equivalent.

Exercice 26 :
Cache Quiz: Answer the following questions with true/false.

(a) A capacity miss occurs when a cache is not associative enough to store all of the lines that
map to the same set.

(b) A write-allocate policy is usually employed with write-back caches.

(c) A uni�ed cache is accessible by all cores.

Page 22

Systems Programming and Computer Architecture Jonathan Smith

Solution:

(a) False. This is a con�ict miss.

(b) True. The line is loaded into cache and written to there, that is, it is dirty.

(c) False. This is not necessarilly the case. A uni�ed cache is simply one that caches both
instructions and data.

Exercice 27 :
Cache formulae: Derive the desired formulae.
Suppose a cache has lines of size 2b bytes, with associativity 2e, and 2s sets in total. Assume a
32-bit address space.

(a) Give a formula for the total number of data bytes that can be stored in the cache.

(b) Give a formula for the number of tag, index, and o�set bits.

(c) Give a formula for the set that a given address a will be placed into. Hint: You may use
the >> operator from C in addition to regular arithmetic operators.

Solution:

(a) 2b bytes per line, and 2e lines per set give 2b+e bytes per set. Since there are 2s sets that
gives 2b+e+s bytes in total.

(b) As blocks are 2b bytes in size, there will be b o�set bits. As there are 2s sets there will
be s o�set bits. This leaves 32− b− s tag bits.

(c) set = (a >> b) mod 2s = ⌊a ÷ 2b⌋ mod 2s. Explanation: There are 2s sets in total.
Hence we take the index bits modulo 2s. The shifting or the division and �ooring
extracts the index bits from the address. Recall that the least signi�cant bits are the
o�set bits, followed by the index bits, and �nally the tag bits.

Exercice 28 :
Exceptions Quiz: Answer the following questions with true/false.

(a) Traps return to the same instruction that triggered them.

(b) Synchronous exceptions are typically handled by the process that triggered them.

(c) There exists exceptions which cannot be masked by the processor.

(d) PICs generally are permitted to reorder exceptions.

Solution:

Page 23

Systems Programming and Computer Architecture Jonathan Smith

(a) False. Traps return to the next instruction. Consider eg. a system call. Returning back
to the system call would lead to an in�nite loop.

(b) False. Upon an exception, the operating system switches into kernel mode, where the
exception is handled.

(c) True. There exists so-called non-maskable interrupts. An example would be the hard-
ware watchdog timer, which aids in process switching.

(d) True.

Exercice 29 :
Map the exception to its type: For each of the following exception triggering events, state
whether it is synchronous or asynchronous, and whether it is a trap, fault, interrupt, or abort.

(a) Calling the open system call.

(b) Reading a (valid) memory location that is not paged.

(c) The arrival of data from the network card.

(d) Encountering an INT 3 (breakpoint) instruction is x86_64.

(e) A memory parity error.

(f) Dereferencing a NULL pointer.

Solution:

(a) Trap, and hence synchronous.

(b) (Page) fault, and hence synchronous.

(c) Interrupt, and hence asynchronous.

(d) Trap, and hence synchronous.

(e) Abort, and hence synchronous.

(f) (Segmentation) fault, and hence synchronous. This will lead to the process terminating
unless the SIGSEGV signal handler has been overwritten.

Exercice 30 :
Virtual Memory Quiz: Answer the following questions with true/false.

(a) The virtual address space must be larger than the physical address space.

(b) Linear page tables are too large to �t in typical main memory sizes.

Page 24

Systems Programming and Computer Architecture Jonathan Smith

Solution:

(a) False. In fact, in some cases the physical address space may be larger than the virtual
address space.

(b) True. This is the primary motivation for the use of multi-level page tables.

Exercice 31 :
Cache + Virtual Memory Calculations: Assume a 32-bit virtual address space with a 16-bit
physical address space. Assume page size to be 1KiB. Further, assume an 8-way VP cache of
size 8KiB with 64 byte blocks.

(a) How many VPN, PPN, VPO, PPO bits are there? Where are they located?

(b) How many CT, CI, CO bits are there? Where are they located?

(c) Will homonyms be an issue here?

(d) How large would a linear page table be? Suppose a 2 byte PTE.

Solution:

(a) Page size is 1KiB = 210B. Hence there will be 10 VPO and PPO bits. They make up
bits [9:0] of the virtual and physical address, respectively.
This leaves 32 − 10 = 22 VPN, and 16 − 10 = 6 PPN bits. The VPN makes up bits
[31:10] of the virtual address, the PPN makes up bits [15:10] of the physical address.

(b) We know blocks to be of size 64B = 26B. Thus there are 6 CO bits. They make up bits
[5:0] of the virtual address, as the cache is virtually indexed.
The cache is 8-way associative, and of size 8KiB = 213B. Applying the formula from
Exercise 27, we conclude there are 13− 5− 3 = 4 index bits. They make up bits [6:9] of
the virtual address, as the cache is virtually indexed.
Finally, since the cache is physically tagged, there are 16− 4− 6 = 6 tag bits, and they
make up bits [15:10] of the physical address.

(c) No, as the index and o�set bits �t exactly into the page o�set.

(d) The page table needs to store an entry for each VPN. We know there to be 22 VPN
bits, hence there must be 222 entries in a linear page table. Each PTE is 2 bytes in size,
so the linear page table is of size 222 · 2B= 223B= 8MiB

Exercice 32 :
Multiprocessing Quiz: Answer the following questions with true/false.

(a) We say that caches are consistent, if their values match.

(b) Snoopy caches require a write-through policy.

Page 25

Systems Programming and Computer Architecture Jonathan Smith

(c) In the MESI protocol, if a block is exclusively held, then a BusRdX must still be issued
upon a write.

(d) x86_64 processors generally implement sequential memory consistency.

(e) False sharing cannot occur in a single processor system, even if multiple threads are running.

(f) The ABA problem cannot occur with pointer tagging.

Solution:

(a) False. Then the caches are coherent.

(b) True. The write-through policy is what enables them to snoop on other processor's
writes.

(c) False. Being in Exclusive guarantees that no other processor holds the line. Hence, a
quiet transition to Modi�ed is legal.

(d) False. They typically implement a weaker model called processor consistency.

(e) True. The reason why false sharing adversely a�ects performance is cache coherency.
If a single processor system is used, then cache coherency is not of concern.

(f) False. The tag can still wrap around.

Exercice 33 :
Devices Quiz: Answer the following questions with true/false.

(a) Each DMA-capable device gets its own virtual address space.

(b) In a producer/consumer ring underrun the consumer is consuming faster than the producer
can produce.

(c) An advantage of programmed I/O compared to DMA is that caches cannot become incon-
sistent, as data always �ows through the CPU.

(d) When talking about a transmission in the context of devices, we mean a transfer of data
from OS to device.

(e) Descriptor rings are typically preferred to bu�er rings.

Solution:

(a) False. DMA addresses are physical.

(b) True. Hence the producer must wait until new resources are available.

(c) False. A device register value might change, while the cache continues to store the stale
value.

Page 26

Systems Programming and Computer Architecture Jonathan Smith

(d) True.

(e) True. This is because they o�er greater �exibility in a number of aspects.

Page 27

