
Systems Programming and Computer Architecture Jonathan Smith

Extra Exercise Collection

Disclaimer: These exercises are in no way o�cially a�liated with the course. There is no guarantee
of correctness, although I do my best to �x any mistakes. (If you spot an error, please let me know!)

Current version: October 7, 2025

Exercice 1 :
Using the Shell

(a) Give the bash command to create a new directory with name �foo� in the current directory.

(b) Give the bash command to create a new �le called �foo.c� in the parent directory of the
current directory.

(c) Give the bash command to print the contents of �foo.txt�, which is located in your home
directory.

(d) Give the bash command to run the executable �foo�, which is located in the sub-directory
�build� of the current directory.

(e) Give the bash command to compile �foo.c�, located in the current directory, into the exe-
cutable �foo� using gcc, with optimisation level 3 enabled.

Exercice 2 :
Basics of C: Answer the following questions with true/false.

(a) There is no way for the value of a variable declared within the scope of a function to persist
between calls.

(b) An int will always be exactly 4 bytes in size.

(c) The standard stipulates that a long must always be larger in size than an int.

(d) The integer 0 evaluates to False.

(e) The integer 100 evaluates to True.

(f) The integer −1 evaluates to False.

(g) The value of the expression foo++ is the same as the value of the expression ++foo.

(h) Suppose we have int foo[5]. Then foo[0] is guaranteed to be located next to foo[1] in
memory.

(i) Suppose we have int foo[5]. Then foo[-1] is a valid expression.

(j) In general, to store a string of length k, the smallest possible array we can de�ne to do so
is char str[k].

Exercice 3 :
Operator Precedence: Correctly parenthesise the following expressions according to the rules
of operator precedence. Assume i, j are some ints, p is some pointers to ints, and f is some
function returning int. Eg. 3 * 4 + 2 ≡ (3 * 4) + 2.

Page 1

Systems Programming and Computer Architecture Jonathan Smith

(a) i >> j + 1 * i - j

(b) i == j & * p + 3

(c) Challenge: * p = i >> 3 << j - 2 * ! f () | 1

Exercice 4 :
C Integers: Answer the following questions with true/false (T/F) or a short answer (A). For
the integer lengths, assume standard values for a x86_64 Linux machine.

(a) Give the hexadecimal representation of the minimum value of an unsigned int (A).

(b) Give the hexadecimal representation of the minimum value of an int (A).

(c) Give the hexadecimal representation of the maximum value of an int (A).

(d) Give a way to compute i - j using only bitwise operators and + (A).

(e) When signed and unsigned values are mixed in an expression, signed values are implicitly
casted to unsigned (T/F).

(f) Suppose we have short s de�ned as some negative number. (int) s will be positive, as
the extra bits on the left will be �lled with 0s (T/F).

(g) Suppose we have int i de�ned as some negative number. (char) i will always be negative
too (T/F).

(h) u << 3 + u ≡ u * 9 (T/F).

Exercice 5 :
Multiplication puzzles: Match the following series of shifts and adds to a multiplicative factor.
Assume u is some unsigned and no over�ow.

(a) u << 2

(b) (u << 5) + (u << 3) + u

(c) ((u << 10) >> 5) + (u << ~(-11))

Exercice 6 :
The C Preprocessor

(a) De�ne a macro SQUARE(x) that multiplies its argument with itself.

(b) De�ne a macro DEBUG_INT(x) that takes a variable's name x and prints �DEBUG: x =
value of x � if DEBUG is de�ned, and otherwise does nothing.

(c) Name two things that belong in a header (.h) and a source (.c) �le, respectively.

(d) When are preprocessor macros bene�cial? What are their downsides?

Exercice 7 :
Memory Layout Basics

(a) Fill in the blanks: The begins at a high address and grows downwards, whereas the
begins at a low address and grows upwards.

Page 2

Systems Programming and Computer Architecture Jonathan Smith

(b) True/False: Virtual memory gives each process its own address space. Hence it is never
possible that two processes access the same physical page.

(c) Fill in the blanks: In a little-endian machine, the least signi�cant byte is stored at the
address.

(d) True/False: The stack will always start at the exact same address in memory.

(e) Outline what happens on the stack when a function ("the caller") calls another function
("the callee") and then when the callee returns.

Exercice 8 :
Pointers

(a) Explain what the unary & and * operators do.

(b) True/False: It hold that sizeof (int) == sizeof (int *)

(c) True/False: Suppose we have:

int main(void) {

int x = 0;

int *p = malloc(sizeof (int));

return 0;

}

Then it holds that &x > p.

(d) True/False: In a byte addressable system, if we have int a[5]; int *p=a, then a[1] can
be accessed via *(p + sizeof (int)).

Exercice 9 :
Cdecl: For the following C declarations, give their natural language counterpart and vice-versa.

(a) struct foo *x[10]

(b) struct foo (*x)[10]

(c) int **(*x)(int, int)[10]

(d) Declare x as an array 10 of pointer to function returning pointer to int.

(e) (char*[]) x

(f) (char (*)[10]) x

(g) (int (*)(int *, char)[3]) x

(h) Challenge: Declare x as function taking pointer to int and returning array 3 of array 10 of
pointer to function taking pointer to pointer to int and returning pointer to union foo.

(i) Challenge++: int* (*(*x[10])(int (*)(int *)))(int *)

Exercice 10 :
Malloc Implementations and Metrics

(a) Outline the di�erences between implicit and explicit free lists.

Page 3

Systems Programming and Computer Architecture Jonathan Smith

(b) (True/False): With explicit free lists, boundary tags are no longer required.

(c) Explain the di�erences between �rst �t, next �t, and best �t policies.

(d) Consider the following sequence of (m/c)alloc/free calls. Compute the aggregate payload
Pk and the minimum heap size Mk at points 1, 2, and 3.

#include <stdint.h>

int main(void) {

int *p1 = malloc (1<<10);

free(p1);

// Point 1

uint32_t *p2 = calloc(1<<8, sizeof(uint32_t));

char *p3 = malloc (1<<10);

// Point 2

int64_t p4 = malloc (1<<10);

free(p2);

// Point 3

free(p3);

free(p4);

return 0;

}

Exercice 11 :
x86_64 Assembly Warm Up: Answer the following questions with true/false.

(a) In x86_64, each instruction is exactly 8 bytes in size.

(b) Generally speaking, compiling a given program for a RISC architecture will result in more
instructions than for a CISC architecture.

(c) A long word is 64 bits in size.

(d) movq (%rax), (%rcx) is a valid instruction.

(e) movq 0x9(%rbx, %rcx), %rax will move whatever is at memory location %rbx + %rcx + 0x9

into %rax.

(f) testl %eax, %ebx sets the ZF if %eax != %ebx.

Exercice 12 :
Condition Codes: Recall the x86_64 condition codes zero �ag (ZF), sign �ag (SF), carry �ag
(CF), and over�ow �ag (OF). For each of the following conditional jumps, derive a predicate that
is true if and only if the jump is taken. You may use the operators ∧,∨,⊕ (xor), and ¬. Hint:
Assume the previous instruction was cmpq a, b (i.e. subq a, b where the result is discarded)
and recall the mnemonics are from the perspective of b relative to a (i.e. jle is taken if b is less
than or equal to a).

(a) je

Page 4

Systems Programming and Computer Architecture Jonathan Smith

(b) jb

(c) ja

(d) jl

(e) jge

Exercice 13 :
Reading Assembly Code I: In the following, assume the below C function was compiled with
di�erent values of the constant K and varying optimisation levels. For each code fragment, state
the value of K. Hint: Per calling convention, the �rst argument to a function is stored in %rdi,
the second in %rsi, while the return value is stored in %rax.

int foo(int a) {

return K * a;

}

(a)

foo:

pushq %rbp

movq %rsp , %rbp

movl %edi , -4(%rbp)

movl -4(%rbp), %edx

movl %edx , %eax

sall $3, %eax

addl %edx , %eax

sall $2, %eax

popq %rbp

ret

(b)

foo:

leal (%rdi ,%rdi ,2), %eax

sall $5, %eax

ret

(c)

foo:

xorl %eax , %eax

ret

Exercice 14 :
Reading Assembly Code II: Consider the following C function that computes the GCD of a
and b using the Euclidean Algorithm. Which of the following x86_64 assembly code fragments

Page 5

Systems Programming and Computer Architecture Jonathan Smith

correspond to it? Hint: More than one answer may be correct. Also recall the calling convention
as in Exercise 13.

long foo(long a, long b) {

while (a != b) {

if (a > b) {

a = a - b;

}

else {

b = b - a;

}

}

return a;

}

(a)

foo:

movq %rsi , %rax

cmpq %rsi , %rdi

jne .L5

.L2:

ret

.L3:

subq %rdi , %rax

.L4:

cmpq %rax , %rdi

je .L2

.L5:

cmpq %rax , %rdi

jle .L3

subq %rax , %rdi

jmp .L4

(b)

foo:

movl $1, %edx

xorl %eax , %eax

.L2:

cmpq %rsi , %rdx

jg .L5

imulq %rdi , %rdx

incq %rax

jmp .L2

.L5:

Page 6

Systems Programming and Computer Architecture Jonathan Smith

decq %rax

ret

(c)

foo:

movq %rdi , %rax

cmpq %rsi , %rdi

jge .L4

.L3:

movq %rsi , %rcx

addq %rsi , %rax

subq %rdi , %rcx

leaq -1(%rcx), %rdx

imulq %rsi , %rdx

movq %rcx , %rsi

addq %rdx , %rax

cmpq %rcx , %rdi

jl .L3

ret

.L4:

ret

(d)

foo:

pushq %rbp

movq %rsp , %rbp

movq %rdi , -8(%rbp)

movq %rsi , -16(%rbp)

jmp .L2

.L4:

movq -8(%rbp), %rax

cmpq -16(%rbp), %rax

jle .L3

movq -16(%rbp), %rax

subq %rax , -8(%rbp)

jmp .L2

.L3:

movq -8(%rbp), %rax

subq %rax , -16(%rbp)

.L2:

movq -8(%rbp), %rax

cmpq -16(%rbp), %rax

jne .L4

Page 7

Systems Programming and Computer Architecture Jonathan Smith

movq -8(%rbp), %rax

popq %rbp

ret

Exercice 15 :
Compiling Basics: Answer the following questions with true/false.

(a) There exist functions that do not require a stack frame.

(b) Every function must end in a ret instruction.

(c) In C, nested arrays are stored in row-major ordering.

(d) A multi-level array of k dimensions requires the same amount of memory accesses to access
as a nested array of k dimensions.

(e) switch statements are always implemented as a series of if/else statements.

Exercice 16 :
Struct Alignment: Sketch the memory layout and state the alignment requirement K of the
following struct declarations

(a) struct s {int i; char c; void *p;};

(b) struct s {char a[3]; char c; double d; int *p[1]};

(c) struct s {short s; struct {int i; char c} t[2]; union {int i; float f} u;};

Exercice 17 :
Nested Arrays

(a) Let T a[X] be an array X of type T . Derive a formula for the address of a[i]. Hint: You
may use the base address of a as &a and the size of T as sizeof(T).

(b) Let T a[X][Y] be an array X of array Y of type T . Derive a formula for the address of
a[i][j]. Hint: You may also declare a as S a[X] with typedef T S[Y].

(c) Let T a[K_1][K_2]...[K_n] be an array K1 of array K2 . . . of array Kn of T . Derive a
formula for the address of a[i_1][i_2]...[i_n].

Exercice 18 :
Reading setjmp/longjmp: What does the following code output?

#include <stdio.h>

#include <setjmp.h>

static jmp_buf buf;

void foo(void) {

printf("foo1\n");

longjmp(buf , 2);

printf("foo2\n");

Page 8

Systems Programming and Computer Architecture Jonathan Smith

}

int main(void) {

int rv;

if ((rv = setjmp(buf)) == 0) {

printf("main1\n");

foo ();

printf("main2\n");

}

else if (rv == 1){

printf("main3\n");

}

else {

printf("main4\n");

}

return 0;

}

Exercice 19 :
Linker Quiz: Answer the following questions with true/false.

(a) Statically linked executables tend to produce larger binaries than dynamically linked exe-
cutables.

(b) The linker will not link together two symbols of di�erent sizes (assume -fno-common).

(c) All the operating system needs to do when starting execution of a statically linked binary
is to copy its contents into memory.

(d) By marking the stack as non-executable, bu�er overruns are no longer a concern.

Exercice 20 :
Identify the linker symbols: For the following C �le, for each name state what kind of
linker symbol is generated (global, external, local, none), and whether it is weak or strong where
applicable. Assume -fcommon. Challenge: Additionally, state the exact type of each linker
symbol (e.g. an external symbol generates a U in the symbol table). man nm provides a succinct
overview of the various types.

#include <stddef.h>

#include <stdlib.h>

#define BIAS (10)

extern void add_vec(int *dest , int *src , size_t len);

int sum_vec(int *vec , size_t len);

extern int *vec1;

Page 9

Systems Programming and Computer Architecture Jonathan Smith

int arr [25];

int *vec2 = arr;

static const size_t ARR_LEN = 25ul;

int sum() {

static int iter = 0;

int *res = calloc(ARR_LEN , sizeof(int));

add_vec(res , vec1 , sizeof(int));

add_vec(res , vec2 , sizeof(int));

int sum = sum_vec(res , ARR_LEN);

free(res);

return sum + iter + BIAS;

}

Exercice 21 :
Floating Point Quiz: Answer the following questions with true/false.

(a) Every int can be exactly represented as a double on an x86_64 Linux machine.

(b) When converting a float to a long, the error will always be at most 1. (Assuming no
special values)

(c) The exponent bias B is computed as B = 2e − 1, where e is the number of exponent bits.

(d) In the case of a denormalised �oating point number, the exponent E = −B + 1.

(e) Floating point numbers are generally evenly distributed.

(f) Round-to-even rounding is chosen for �oating point numbers out of ease of implementation,
despite it being statistically biased.

(g) Suppose we have a binary decimal number of the form 1.B . . . BGRX1X2 . . . , where the
guard bit G is the LSB of our result. Let S =

∨∞
i=1Xi. We round the result i� G = R =

1, S = 0.

Exercice 22 :
Converting to FP: Give the bit representation of the following numbers when converted to
�oating point. The �oating point format is half precision IEEE 754, that is 1 sign bit, 5 exponent
bits, and 10 fraction bits.

(a) 5000 = 10011100010002

(b) −1
3

(c) 1× 1020

Exercice 23 :
Determining key FP values: Give the value of the following descriptions in the format a

b
×2c

Page 10

Systems Programming and Computer Architecture Jonathan Smith

with a, b, c being base 10 integers. Assume the same format as in Exercise 22, i.e. 1 sign bit, 5
exponent bits, and 10 fraction bits.

(a) The largest denormalised number.

(b) The smallest positive normalised number.

(c) The largest normalised number.

Exercice 24 :
Optimisation Quiz: Answer the following questions with true/false.

(a) With the -O3 �ag enabled, the compiler might perform optimisations that slightly change
the semantics of a program, with the bene�t of improving performance.

(b) Among RAR, RAW, WAW, and WAR dependencies, RAW is the one that typically carries
the greatest performance penalty.

(c) If a procedure is throughput bound, then its operations must execute sequentially.

(d) Much of the manual optimisation that was shown in the lecture is not necessary these days,
as modern compilers will simply auto-vectorise code anyway.

(e) If functions didn't have side e�ects, the compiler could optimise around calls much more.

Exercice 25 :
Is the optimisation legal? For the following pairs of C snippets, argue whether they are
semantically equivalent in all cases, i.e. a compiler would be allowed to rewrite the code in such
a manner.

(a)

void f_0(int *a, int *b, int *c, size_t len) {

for (size_t i=0; i<len; i++) {

b[i] += a[i];

c[i] += a[i];

}

}

/* === */

void f_1(int *a, int *b, int *c, size_t len) {

size_t i;

for (i=0; i<len -1; i+=2) {

b[i] += a[i];

b[i+1] += a[i+1];

c[i] += a[i];

c[i+1] += a[i+1];

}

for (; i<len; i++) {

b[i] += a[i];

c[i] += a[i];

}

Page 11

Systems Programming and Computer Architecture Jonathan Smith

}

(b)

int f_0(int *a, size_t j, size_t k) {

int res = 0;

for (size_t i = 0; i < k; i++) {

res += a[2 * i + j * k];

}

return res;

}

/* === */

int f_1(int *a, size_t j, size_t k) {

int res = 0;

size_t i;

size_t offset = j * k;

for (i = 0; i < k - 1; i += 2) {

size_t inner = i << 1;

res += a[inner + offset];

res += a[inner + 2 + offset];

}

for (; i < k; i++) {

res += a[(i << 1) + offset];

}

return res;

}

(c)

int f_0(int *a, size_t len) {

int res = 0;

for (int i = 0; i < len; i++) {

res += a[i * 30];

}

return res;

}

/* === */

int f_1(int *a, size_t len) {

int res = 0;

for (int i = 0; i < len; i++) {

res += a[i << 5 - i << 1];

}

return res;

}

Page 12

Systems Programming and Computer Architecture Jonathan Smith

(d)

float f_0(float *a, long len) {

float res = 0;

for (long i = 0; i < len; i++) {

res += a[i];

}

for (long i= len - 1; i >= 0; i--) {

res += a[i];

}

return res;

}

/* === */

float f_1(float *a, long len) {

float res = 0;

for (long i = 0; i < len; i++) {

res += 2.0f * a[i];

}

return res;

}

Exercice 26 :
Cache Quiz: Answer the following questions with true/false.

(a) A capacity miss occurs when a cache is not associative enough to store all of the lines that
map to the same set.

(b) A write-allocate policy is usually employed with write-back caches.

(c) A uni�ed cache is accessible by all cores.

Exercice 27 :
Cache formulae: Derive the desired formulae.
Suppose a cache has lines of size 2b bytes, with associativity 2e, and 2s sets in total. Assume a
32-bit address space.

(a) Give a formula for the total number of data bytes that can be stored in the cache.

(b) Give a formula for the number of tag, index, and o�set bits.

(c) Give a formula for the set that a given address a will be placed into. Hint: You may use
the >> operator from C in addition to regular arithmetic operators.

Exercice 28 :
Exceptions Quiz: Answer the following questions with true/false.

(a) Traps return to the same instruction that triggered them.

(b) Synchronous exceptions are typically handled by the process that triggered them.

(c) There exists exceptions which cannot be masked by the processor.

Page 13

Systems Programming and Computer Architecture Jonathan Smith

(d) PICs generally are permitted to reorder exceptions.

Exercice 29 :
Map the exception to its type: For each of the following exception triggering events, state
whether it is synchronous or asynchronous, and whether it is a trap, fault, interrupt, or abort.

(a) Calling the open system call.

(b) Reading a (valid) memory location that is not paged.

(c) The arrival of data from the network card.

(d) Encountering an INT 3 (breakpoint) instruction is x86_64.

(e) A memory parity error.

(f) Dereferencing a NULL pointer.

Exercice 30 :
Virtual Memory Quiz: Answer the following questions with true/false.

(a) The virtual address space must be larger than the physical address space.

(b) Linear page tables are too large to �t in typical main memory sizes.

Exercice 31 :
Cache + Virtual Memory Calculations: Assume a 32-bit virtual address space with a 16-bit
physical address space. Assume page size to be 1KiB. Further, assume an 8-way VP cache of
size 8KiB with 64 byte blocks.

(a) How many VPN, PPN, VPO, PPO bits are there? Where are they located?

(b) How many CT, CI, CO bits are there? Where are they located?

(c) Will homonyms be an issue here?

(d) How large would a linear page table be? Suppose a 2 byte PTE.

Exercice 32 :
Multiprocessing Quiz: Answer the following questions with true/false.

(a) We say that caches are consistent, if their values match.

(b) Snoopy caches require a write-through policy.

(c) In the MESI protocol, if a block is exclusively held, then a BusRdX must still be issued
upon a write.

(d) x86_64 processors generally implement sequential memory consistency.

(e) False sharing cannot occur in a single processor system, even if multiple threads are running.

(f) The ABA problem cannot occur with pointer tagging.

Exercice 33 :
Devices Quiz: Answer the following questions with true/false.

(a) Each DMA-capable device gets its own virtual address space.

Page 14

Systems Programming and Computer Architecture Jonathan Smith

(b) In a producer/consumer ring underrun the consumer is consuming faster than the producer
can produce.

(c) An advantage of programmed I/O compared to DMA is that caches cannot become incon-
sistent, as data always �ows through the CPU.

(d) When talking about a transmission in the context of devices, we mean a transfer of data
from OS to device.

(e) Descriptor rings are typically preferred to bu�er rings.

Page 15

